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EVALUATION OF ALGORITHMS FOR LINEAR ARRAY BEAMFORMING ON
THE AN/UYK-17 (XB-1)(V) SIGNAL PROCESSING ELEMENT

INTRODUCTION

The Naval Research Laboratory (NRL) is developing a microprogrammed signal
processor, the AN/UYK-17 Signal Processing Element (SPE), which is intended to be part
of the Navy's All Applications Digital Computer (AADC) [1]. The SPE consists of four
major subsystems: a Microprogrammed Control Unit (MCU), a Buffer Store and Storage
Control Unit (SCU), a Signal Processing Arithmetic Unit (SPAU), and Input/Output (I/O)
unit [2]. The joint NRL/NUC Program-Controlled Processing System (PCPS) program
will use the AADC SPE to perform passive acoustic array processing for a linear array [3].
The SPAU will do most of the processing for this program. The purpose of this study is
to find an overall computationally efficient and accurate acoustic array processing algo-
rithm for the SPE.

An overview of linear passive array beamforming is presented, the respective advan-
tages of time-domain and frequency-domain beamforming are examined with processing
by the SPAU in mind, and three frequency-domain beamforming algorithms are analyzed.
The SPAU has two's complement, fixed-point, rounded arithmetic. Through SPAU simu-
lation, the effects of quantization are studied for two cases. First, the effect that quanti-
zation error has on the suppression of a weak signal in the desired direction by a strong
interfering signal is examined by the determination of discrepancies between "ideal" and
fixed-point response curves. Second, a statistical study is undertaken to ascertain whether
the error due to finite register length produces any major divergence from perfect results
when a weak signal response is polluted with noise. Finally, the three frequency-domain
algorithms are studied with regard to the efficient use of the SPAU's hardware.

PASSIVE ACOUSTIC ARRAY BEAMFORMING

Because the main purpose of this study is to determine the effect of quantization on
passive array beamforming, the simplest type of linear array is considered. A towed array
under study for PCPS application has 34 equally spaced elements and is used for this
study. A towed array is an array of hydrophones; in this case it is linear, towed under-
water by a ship. Emphasis is placed on architectural considerations for the SPE to deter-
mine suitable array processing macros.

Beam Patterns

A receiving beam is formed when an array is made to accept energy from a given
direction and, to a certain degree, reject energy from all other directions [4]. The

Note: Manuscript submitted October 4, 1974.
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directivity pattern, or beam pattern, is a graph of the output power response of the array
plotted as a function of angle. Each element of an array may be weighted by coefficients,
such as Taylor weights, in order to decrease sensitivity in an undesired direction; however,
as a result of spatial weighting, the sharpness of the directivity pattern in the desired di-
rection is decreased. The beam pattern for a spatially weighted symmetric array with an
even number of elements 2M is given by

M
K2M (0, ¢)=E Wne27ri(d/X)(n-[1/21 )(sinq5-sin0)

n= -M

E2 WI cos [2X (n - .)(sin -sin 0)] (1)
n=1

where d is the distance between elements, X is the wavelength of sound in water for a
given frequency, 0 is the steering direction, and 0 is the source direction [5]. Equa-
tion (1) can be greatly simplified, as shown later, for uniform weighting. The number
of elements, the element spacing, and the wavelength determine the beam pattern. The
main lobe beamwidth and the side lobe height determine the quality of the beamformer-
generally, the narrower the main lobe and the lower the side lobes, the better the beam-
former. Adaptive procedures can sometimes be applied and improved results obtained.
This study concentrates on an unshaded linear array. Uniform weighting was chosen
because of the associated simple and well-understood array response. Emphasis is placed
on architectural considerations for the SPE to determine suitable array processing macros.

Time-Domain Beamforming

Perhaps the theory of beamforming is easier to understand for the time domain
since the algorithm is a simple delay and sum procedure. Suppose that the beamformer
is steered at 0 degrees. This corresponds to rotating the array through 0 degrees. Now,
when the signal impinges upon the array in a direction normal to the array before rota-
tion, the (m - 1)th element receives the signal a time [d sin (-0)] /c later than the mth
element. Hence, the signal at each element must be delayed by [-((m - 1)d sin 01/c,
where m is the element number, in order to steer the beamformer to 0 degrees. A con-
ventional time domain beamformer with eight elements is shown in Fig. 1, in which T is

the time delay between elements.

A beamformer steered at broadside has 0 = 0. The main lobe of the beam pattern
is in the 0 = sin 1l(cr/d) direction. The equation for the time domain beamformer is

2M -1
R(t) = ;g Wns(t-nT), (2)

n=0

where Wn = 1 for uniform spatial weighting.
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TS Lo LT qT tJ Lo 7r Delay Elements

Fig. 1-A conventional time-domain beamformer

Frequency-Domain Beamforming

By means of the Fourier transform beamforming can be performed in the frequency
domain. Both types of beamforming, while they are equivalent through the Fourier trans-
form, have their respective advantages; hence, one type can be chosen as being more de-
sirable depending upon the requirements of the system.

Now with uniform weighting, let us Fourier transform the time domain beamformer
equation:

R0co) = R~t~eiwtdt 2M-1
R (c) = Jo R(t)e-iwtdt = E S(W, n)e(-27rindsinO)Ic

__o n=O

where S(cw, n) is defined to be the Fourier transform of the signal at the nth element and
X = 27rf. Therefore, a time delay in the time domain is equivalent to multiplication by a
phase factor in the frequency domain.

Digital Array Processing

The development of special purpose high-speed digital processors has made it de-
sirable to perform signal processing algorithms digitally. With digital implementation of
signal processing procedures, automatic gain control requirements are reduced since, for
example, a 90-dB range is provided by a 16-bit machine such as the SPAU. Also, digital
processing is more flexible because filter coefficients, etc., can be changed simply by
changing the contents of digital registers. By using a parallel architecture in the proces-
sor, relatively high frequency signals can be processed-the limit is set typically by the
speed of the A/D converters [6]. For very low frequency signals, analog elements (ca-
pacitors, inductors) are very large; hence, digital techniques can be used to advantage [6].
Procedures cannot be exactly repeated by analog means because analog device values are
sensitive to environmental conditions, whereas digital states are not. Components in an
analog system can be faulty and go undetected because the system will usually continue
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to function with some attendant error; whereas, in a digital system, if a component is
faulty, the whole system usually fails to operate. Although digital techniques introduce
quantization errors, they are, in general, more accurate than analog processes because
precision of electrical components in analog devices is limited. The introduction of the
fast Fourier transform (FFT) [7], a fast algorithm for calculating the discrete Fourier
transform of a sequence, has also added to the impetus for processing in the digital
domain.

Advantages of Frequency-Domain Beamforming for the SPE

Usually, the output of a time-domain beamformer is transformed to the frequency
domain for subsequent spectral analysis. The output of the frequency-domain beam-
former is already in the frequency domain. There are, however, computational advan-
tages for the SPE in performing frequency-domain beamforming. The SPAU contains
four high-speed multipliers and associated adders and thus has the capability for parallel
processing. Complex multiplications and FFTs are operations that are well equipped to
use efficiently the SPAU's hardware. Frequency-domain beamforming requires the kind
of operations that the SPE is designed to do. The time-domain approach is a delay and
sum process with multiplications if the array is spatially weighted. Beamforming in the
time domain requires the dynamic storage of signal data for the purpose of effecting
time delays on these data. To obtain the required delay resolution (i.e., to steer in small
angular increments), it is necessary to interpolate the sampled signal or to greatly over-
sample. To obtain a sufficiently small time delay for the specified resolution by inter-
polation is very costly and also slows processing time considerably, and to oversample
requires faster analog-to-digital (A/D) conversion and larger amounts of storage, which
are very expensive. It is informative to calculate the time delay required for a particular
array so that it can be steered in increments of half the half-power main lobe width.

Equation (1) can be simplified by means of Eqs. (417) and (418) from Ref. 8 if
uniform weights are assumed. Hence,

[sin ( 2r) (sin -sin 0)]

sn[(27Xd)(sin sin2 )]

where 2M = 34 and X = c/f. The object is to solve for 0 when

K2M(S.0) =-

Let

x = 2 rd (sin 0 - sin 0) .
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sin 3 x
2 = 17 V.
x

sin 2

By the method of successive approximations,

x = 0.08189 and for 0 = 0,

sin 0 = 0.08189 2id

Now Tf = d sin ¢/c seconds.

To satisfy the Nyquist criteria, the signal would be sampled only every 7, = 1/2f
seconds. Now,

- rd7r 38.5.
'ro 2fd(O.08189X) 0.08189

Thus, for the time-domain formulation, it would be necessary to sample 38.5 as many
times as normal in order to steer the beam in increments of half the half-power main
lobe width. This implies that for a given bound on accuracy up to 38 times as much
delay storage is needed for time-domain beamforming, whereas for the frequency domain
all that is required is a complex multiplication by a phase factor. Hence, for the SPE,
frequency-domain array processing is more efficient in utilizing hardware, requires less
storage, and is better matched to the processing capabilities of the SPAU.

QUANTIZATION EFFECTS IN THE SPAU BEAMFORMER

Finite register length imposes a limitation on the computational accuracy in digital
processing. As noted earlier, however, the error from quantization is, in general, less than
the inaccuracies from processing by analog means. In this study, the effects of finite
register length are examined only for the frequency-domain beamforming algorithms;
quantization error for the FFT which transforms the time-domain samples to the fre-
quency domain where they are processed has been analyzed in another report [9]. In
a two's complement, fixed-point, rounded, 16-bit machine, quantization error is intro-
duced in the following ways:

1. Quantization of input data

2. Quantization of system coefficients such as sines and cosines used in complex
multiplication

3. Rounding at the multipliers

4. Scaling to prevent overflow in the adders.

The first two sources of error are obvious. When two 16-bit numbers are multiplied,
a 32-bit product is obtained; hence, this product must be rounded to 16 bits so that the
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processing can continue. To prevent overflow, the inputs to adders must be scaled for
fixed-point machines. Scaling can cause large errors. It is usually performed before the
input data goes through an algorithm; hence, the whole word length is not fully utilized.
In some algorithms, such as the FFT, when scaling is needed, it is done on blocks of data
at certain stages of the computation. This method kicks out a "bit" of error at various
stages in the calculation and uses the word length more efficiently. The FFT algorithm
is done in stages, the results of each stage are tested for overflow conditions, and the
whole block of data is scaled by 1/2 if the test indicates the need for scaling.

Algorithms for Frequency-Domain Beamforming

A frequency-domain beamformer is shown in Fig. 2.

--27ri fd ine

~~~C

*~~~~~~~~~~~~~ 7
0~ ~ ~

/ /-27r~~~~~~~~~~~~~~~~~~~?fid34fsine

by [<1~~~~~~~ S(1, 34)/

Fig. 2-Frequency-domain beamformer

A block of points from each sensor is transformed via the FFT to the frequency
domain. To form a beam in the 0 direction, the Fourier transform of a signal from each
sensor is chosen, each array is at the same frequency, and each output is multiplied by
the appropriate complex phase factor and then summed over the elements. The equation
for the frequency-domain beamformer is

34
R(0) = A S(, k)e(-2-TifkdsinO)/c (3)

k =1

where 0 is the steering angle, k is the sensor number, and S(2, k) is the frequency-domain
signal from the kth sensor with frequency f = 92/27r. We will examine three ways in
which the SPAU can implement the operation defined by the right side of Eq. (3).

Dot Product-The dot product algorithm is perhaps the most straightforward of the
three since it is the frequency-domain beamforming equation. The CDC 6400-6600
KRONOS 60-bit floating-point implementation of the beamformer equation will be con-
sidered ideal. Let U be the complex vector
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e( -27rifd sin 0)/c

e( -27ri2fdsin 0)/c

e( -27ri34fd sin O)/c

and let S be the 1 X 34 complex vector

S = [9(2, 1)S(92, 2) ... S(2, 34)]

where n = 2irf and k refers to the element position. Now the response is

R(O) = S U,

or

34
R(0) = E S(R, k)e(-27rikfdsin0)Ic

k=1

If 1S(Q, k)l < lVk, then IR(0)I < 34 by the triangle inequality and the Cauchy-
Schwartz inequality. To prevent overflow in the fractional, fixed-point arithmetic of the
SPAU, the input (i.e., S(S2, k), k = 1, ... , 34) is scaled by 32 and, hence, 5 bits are lost
before the computation begins. Scaling by 34 would absolutely prevent overflow; how-
ever, overflow was not encountered with the input scaled by 32. This method requires a
complex multiply for each sum in the summation and, hence, uses all four SPAU multipliers.

To form a beam in the 0 direction by the dot product requires 34 complex multipli-
cations, 68 real additions (2 for each complex multiplication), 34 complex additions and
the access of 34 coefficients, exp [(-2 7rikfdsin 0)/c].

Recursive Algorithm-Another algorithm that is somewhat more efficient is a recur-
sive form of the Goertzel algorithm for calculating the discrete-Fourier transform (DFT)
of a sequence, one point at a time [10]. The recursive form is

y(O, 2) = (0, 0)

y(k, 2) = y[(k - 1), Q2] e(27TifdsinO)Ic + S(k, Q2)

where k = 1, 2, ... , 34 and R(O) = y(34, Q2). This procedure requires 34 complex multi-
plications, 68 real additions (2 for each complex multiplication), 34 complex additions,
but only one coefficient exp [(2 7T i k f d sin 0)/c]. Again, scaling is performed on the input,
which increases the error due to quantization because the full word length cannot be
used.

Short FFT Algorithm-The third approach is to use a short FFT to calculate the
sum [11]. This algorithm is very fast and accurate. Since 34 is not a power of 2, at
least a 64-point FFT, zero extended, must be used. Let N be the number of points used

7
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for the FFT. When the FFT is used to form a beam in the frequency domain,
R[(Nfd sin 0 )/c] is calculated and R( O) must be obtained from the FFT output. To ob-
tain the required resolution in the beam pattern, a 256-point FFT is needed. Although
the FFT is faster than the recursive algorithm or the dot product for the same number
of points, it is not faster when a 256-point FFT must be computed. For N a power of
2, N lg2 N real additions and (1/2)N log2 N real multiplications are needed to compute
the FFT of N points [10]. Let us compare the number of real multiplications needed
for the three algorithms: 4 X 34 = 136 real multiplications for both the dot product and
the recursive algorithm and at most (1/2)(256)(8) = 1024 real multiplications for the
FFT. Another disadvantage encountered when using the FFT is that the response for
any arbitrary steering angle cannot be obtained. Although the FFT is not as flexible as
the other algorithms with regard to steering direction, it is very accurate and can use a
block scaling technique that minimizes the quantization error due to scaling. Using a
256-point FFT is not desirable, however, because it slows the computation of R(0) sig-
nificantly. An alternative approach would be to use a 64-point FFT, which would limit
the beamformer's ability to steer in certain directions-it would coarsen the resolution.

The Effect of a Strong Interfering Signal

To examine the effects of quantization on frequency-domain beamforming, the
response due to a weak signal in the look direction plus a strong interfering signal is
computed in both 16-bit fixed-point and 60-bit floating-point arithmetic. After choosing
four steering directions, the beam pattern for each direction is examined to determine
the placement of the interfering signal. A signal of varying magnitude is placed in the
steering direction and is expected to have a stronger influence on the array response
than the interfering signal. An interfering signal of constant magnitude (0.5) is placed
at a peak or a null of the beam pattern for each respective steering direction; thus, it
will have less effect if it is in a null than if it is placed at a peak. Both signals are sinus-
oidal and at the same frequency.

The purpose of this experiment is to determine whether quantization causes large
discrepancies between the ideal floating-point response and the SPAU simulated fixed-
point response. The magnitude of the signal in the steering direction is varied from a
value of 0.5 to 0. Although it is customary in beamforming analysis to keep the magni-
tude of the signal in the steering direction normalized to 1, it is not practical when exe-
cuting in a fixed-point processor because overflow is always a problem and increasing the
magnitude of the interfering signal while keeping the magnitude of the signal in the look
direction constant would eventually result in overflow.

The simulated output from each sensor is generated, using floating-point arithmetic,
from the amplitude and phase of the two interfering signals and is then fed into one of
the beamforming algorithms. The ideal response is calculated using the dot product
algorithm on the CDC 6400-6600 KRONOS system with 60-bit floating-point arithmetic.
To gain confidence in the computer results, a theoretical closed-form expression for the
response of an array steered at 0 degrees with the source at 0 degrees is calculated for
an amplitude of 0.5.

R(0, 5) = 2 0.5 cos[2;d (k -- )(sin -sin 0)]
Y I X 12

8
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where X = c/f and d is the element spacing. This equation yields the response due to one
signal. To obtain the response due to two signals, it is necessary to multiply by an ap-
propriate phase factor so as to cause both signals to seem to be from the same direction.
The response due to the interfering signal alone agrees with the program output. The
three beamforming algorithms are SPAU simulated in both rounded and truncated arith-
metic and the sensor outputs are scaled by 32. The four steering angles are 00, 30, 150,
and 450, and both signals are at the same frequency.

For each steering angle and each interfering source direction, the magnitude response
due to the two signals is plotted versus the magnitude of the signal in the look direction.
To calculate the magnitude response, the real and imaginary parts of the response are
squared, summed, and then raised to the one-half power. When the magnitude of the
signal in the steering direction is very small, the difference between the ideal response
and the SPAU response is greater for all three algorithms, the shape of the fixed-point
curve is different from the ideal, and the fixed-point curve is actually discontinuous for
responses of very small magnitude. These discontinuities are caused by thresholding, or
underflow. This phenomenon occurs when a number is too small to be represented in
16 bits. The output from the beamformer is in complex form. For a very small signal
in the source direction and the interfering signal in a "low" of the beam pattern, the
output from the beamformer is very small. Hence, when the output is squared, it is even
smaller and cannot be represented in 16 bits-a great deal of significance relative to the
squared number is lost due to rounding or truncation. Figure 3 dramatically exhibits the
thresholding effect. As the squared value attains another quantization level, the magnitude
response steps up in a discontinuous manner. The beam is steered at 00 and the inter-
fering signal is at 90, a low point of the beam pattern, and the results are from the recur-
sive algorithm.

In Figs. 4 and 5, results from the recursive algorithm are plotted with the beam-
former at 150 and the interfering signal at 220. The magnitude of the response of the
two signals is plotted as a function of the amplitude of the signal at 150. In Fig. 4, the
amplitude of the signal at 150 ranges from 0.0 to 0.5. With this resolution, the SPAU
simulated results are congruent with the floating-point ideal responses.

In Fig. 5, the region from 0.0 to 0.01 in the abscissa is magnified and the difference
in the floating-point and fixed-point curves can be seen. Other curves are shown in Ap-
pendix A, together with all the results in tabular form. The SPAU simulated results agree
very well with the ideal results. As was observed earlier, exact values of the steering angle
cannot be obtained with the FFT; hence, response at the angle closest to the steering
angle is recorded. The recursive algorithm proved to be more computationally efficient
and acceptable with regard to accuracy.

Noisy Elements

The sensor elements themselves are subject to random acoustic and electrical noise
and it is of interest to consider how this noise affects the beamformer's sensitivity in the
steering direction. This study examines the degree to which the effects of finite register
length coupled with a noise source whose power spectra has a constant magnitude and a
random phase suppress a weak signal in the steering direction. Because the SPAU was
ultimately designed with rounded arithmetic, all simulations are performed for rounded

9
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AMPLITUDE OF SIGNAL AT 0°

Fig. 3-Signal strength at steering direction, 0°, vs
magnitude of response with interfering signal at 9°
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0 0.1 0.2 0.3 0.4 0
RELATIVE AMPLITUDE OF SIGNAL AT 15°

Fig. 4-Signal strength at steering direction of 15° vs magnitude of response
with interfering signal at 220

arithmetic. The KRONOS random number function was used to generate the random
phases (0 to 2ir) of the noise samples. A noise sample is added to the signal sample of
each hydrophone element of the array. Then it is fed into the ideal dot product beam-
former, the SPAU simulated dot product beamformer, and the SPAU simulated recursive
beamformer. Since it is desirable to obtain a statistically stable mean response and since
many iterations (5000) are performed to obtain a stable mean, the FFT was not simulated
because it is not flexible with regard to steering angle and because of the computer ex-
pense that would be incurred in such a simulation. The same four steering directions as
used in the first experiment are used for this study. The magnitude of the signal in the
steering direction is from 0.0 to 0.1 and both the signal and the noise are scaled by 32.
The array parameters are also the same. By experimental means, the magnitude range was
chosen from 0.0 to 0.1 since for larger magnitudes the effects of uncorrelated noise are
similar for both 16-bit fixed-point and 60-bit floating-point arithmetics. As evidenced by
the previous experiment, the noticeable discrepancies between "ideal" and fixed-point
occur for small signal strengths.

11
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0*1 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0G009 0.01
RELATIVE AMPLITUDE OF SIGNAL IN LOOK DIRECTION

Fig. 5-Signal strength at steering direction of 150 vs magnitude of response
with interfering signal at 220 (magnified)

The object of the study is to examine the effects that quantization has on the re-
sponse due to signal plus noise. The following scheme (Fig. 6) is used for this experiment.

There are 5000 iterations of the beamforming algorithm used to obtain a variance of
10-6. Since there are 34 elements, the random number generator is called 34 times for
each iteration. The randomly phased noise is added to the hydrophone signal and is then
run through the three beamforming algorithms where the power response is calculated.
The mean power for each signal strength in a particular direction is calculated and plotted
against signal magnitude.

Theoretical Derivation of the Mean Power Due to Noise-We will compute the mean
of the beamformer output due to noise alone. The mean power with a nonzero signal is
just the sum of the power due to the signal alone and the mean power due to the noise
since no random variable is involved in the calculation of the mean of the signal. The
equation for the complex response is

12
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Fig. 6- Scheme for examining quantization for a low-strength signal
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34

R(O) = A 34 e2 7ri~ke(-27ikfdsinO)/c
k =1

34
= 34 E e2 7i(Xk-[dk/X] Sin 0)

k =1

where Xk is the random variable with a uniform probability density fx (x) = 1 and
xe[0, 1]. Now the power P(O) is the squared complex magnitude of R(O) above. Let
Ak= Xk -(dk/X) sin 0. Then

34 34
P(O) 32 E e2 7riYk e- 27ryn

k=1 n=1

322 [34 + e274iyk e-27qYj4)

k=1,34
j=1,34

E[e27riYk e27riyj = 0 Vl, I

since the random variables are independent and e±27riYk is analytic on and inside the unit
circle. Therefore,

E[P(O)] = E 34
f 32J

34
322

= 0.03325,

since a translation does not affect the expected value so long as xk ranges over its entire
domain.

Theoretical Derivation of the Variance Due to Noise-The variance a2 is defined to
be

a = E{(X-E[X])2} = E[X2] - E[X12 .

We must find E[p(O)2]. From Eq. (4), we have

14
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[p(0)]2 = 3y [34
2

e 2 7Ti-Vk e 2lTiyj]I

where y,, i = j, k is defined as before.

k7&j
k=1,34
j=1,34

+ E e iYke-27Tiy

k=1,34
j=1,34

e -k e 27

Y.
Mim

I=1,34

m=1,34

e27ri-y1 e -27riyl ]

As shown for Eq. (4), the expected value for the second term is 0.

Now consider the last expression. The terms in the product of the two summations
are the product of four complex exponentials. As shown for Eq. (4), expressions of this
form have an expected value of 0 except when k = m and j = I in which case, the ex-
pected value is 1. There are

- 34!
P34,2 = 32!

terms whose expected value is 1. Therefore,

- 342 1 34! _ 342
x 324 324 32! 324

= (34.33)

Now we wish to find the sample variance which is 02 - Ix/N for uncorrelated data [12]:

2 34.33 1

324 5000

= 0.214 X 10-6.
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Results and Comments

The mean and variance for the four steering directions are shown in tabular form in
Appendix B, and the simulated mean and variance agree very well with those theoretically
derived earlier. The mean power is plotted vs signal strength for the array steered at
broadside in Fig. 7. The simulated results from the recursive algorithm and the ideal re-
sults are essentially the same with the resolution used for this curve.

0.044

0.0421

0
0L
z
wj

0.040

0.0381

0.0361

0.034

0.033
0 0.02 0.04 0.06

SIGNAL STRENGTH
0.08 0.i

Fig. 7 - Signal strength vs mean power at 00, the steering direction.

In Fig. 8, the section of the graphs with signal magnitude from 0 to 0.01 is magnified.
As can be seen, the curve corresponding to the SPAU simulated recursive algorithm is
within a standard deviation of the "ideal" curve. Contrary to expectation, the mean
power increases slightly for decreasing signal strengths from 0.001 to 0 for the array
steered at 00. This happens because 5000 trials are not sufficient to ensure that the
random numbers generated by the KRONOS random number function are uncorrelated.
As an experiment to test this hypothesis, the random number generator was called
200,000 times and then the mean power calculated after 5000 trials for these signal
amplitudes. The mean power decreased as it should.

For each steering angle, the mean power calculated by the SPAU simulation and the
"ideal" floating-point mean power agree very well (to within a standard deviation of each
other). This experiment gives confidence in the SPAU's ability to beamform accurately.
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cr
w
3.0
a-
z
4
w

SIGNAL STRENGTH

Fig. 8-Signal strength vs mean power at 00, the steering direction (magnified)

THE SPAU MACRO FOR FREQUENCY-DOMAIN BEAMFORMING

We must choose one algorithm for the SPAU macro, although the other algorithms
will be available. Here, the relative merits of each algorithm will be reviewed and the
macro microcoded.

Pros and Cons for Each Algorithm

Let us first examine the FFT. In its favor, the FFT is the most accurate of the
three algorithms since the input data do not have to be prescaled. The scaling is per-
formed on blocks of data during various stages of execution; hence, this conditional
block scaling puts out a bit of quantization noise when it is needed. The FFT is also
very well suited to the SPAU's architecture, since the SPAU was designed with the FFT
in mind. The FFT, as a beamforming algorithm, does have its drawbacks. For the array
that is referenced in this study, it is necessary to use at least a 128-point FFT and up to
a 2048-point FFT to obtain the required resolution for different frequencies [3]. These
FFTs require more time for execution than the dot product or the recursive Goertzel
algorithm. Steering directions are inflexible. When the FFT is used to beamform in the
frequency domain, R(Nf(d sin 0)/c), where N is the length of the FFT, is calculated, and
R(O) must be obtained. In other words, the output block must be searched to obtain the
desired data point in order to find a subscript k such that 0 = sin- 1(kc/Nfd). For a given
frequency f, element spacing d, and FFT length N, a list of steering angles 0 can be
obtained.

Now let us consider the dot product. The input to this algorithm must be scaled by
K, the number of array elements, to prevent overflow. Hence, at the initiation of the

17
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computation log2 K bits are lost, the whole word length is not used, and the quantization
noise accumulates as the calculation progresses and is carried throughout. For these rea-
sons, the dot product is not as accurate as the FFT. For each steering direction, K steer-
ing phasors must be available for the execution of the algorithm. Beamforming is generally
involved in real-time applications where time is critical, and the required steering phasors
must be precomputed and stored. Suppose that we wish to examine 512 frequencies and
32 steering directions. A steering phasor is required for each hydrophone element; hence,
557,056 sine-cosine pairs must be generated and stored. To contemplate storing this
large number of steering phasors is unrealistic because storage is the most expensive com-
ponent of the SPE. Unless it is possible to generate the phasors as they are needed, it
would not be advisable to use the dot product and because the SPE is to be used for
real-time applications, it is unlikely that the phasors could be generated during processing
time.

Now let us look at the recursive algorithm. Both the recursive and the dot product
require the input data to be scaled by K, the number of array elements. The accuracy
of both algorithms are essentially the same. Both algorithms require the same number of
complex and real operations. One important difference between the dot product and the
recursive algorithm is that the recursive algorithm requires only one steering phasor for
each beam direction and frequency. For 512 frequencies and 32 steering directions, only
16,384 sine-cosine pairs are required-storage requirements decrease by a factor of K
over the dot product. Hence, the recursive algorithm is our candidate for the SPAU
beamforming macro.

SPAU Macro Coded in ANIMIL

The SPAU has a microprogramming language ANIMIL [13,14] in which we coded
the recursive algorithm. While the other algorithms will be available, the recursive algo-
rithm will be the preferred one.

The steering phasors are generated sometime prior to the beamforming computation
and are stored in the SPAU Coefficient Store (CFS). The CFS has 1025 32-bit words
which are read-only and 1023 64-bit words which are both read and write. Sine-cosine
pairs whose arguments range from 0 to 7r/2 in increments of 7r/2048 reside in the first
1025 words. The remaining 1023 64-bit words contain coefficients such as steering
phasors or filter coefficients. There are four 16-bit registers that are loaded from the
CFS.

The hydrophone data are stored in SPE buffer memory. They are brought into the
X or Y local stores of the SPAU via two 32-bit-wide data channels. The inputs to the
SPAU's four 150-ns (one cycle) multipliers can be selected from the X or Y stores, from
the Z registers, and from adders. The inputs to the SPAU's four adders can be selected
from multiplier outputs, other adder outputs, and the local stores. Adders 2 and 4 can
choose as inputs the results of adders 1 and 3, respectively, and both additions are exe-
cuted in one cycle. For example, at the beginning of a cycle, inputs are selected for
adder 1, the result is obtained and fed into adder 2 as input, and the result is produced
by the end of the cycle.

18
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Figure 9 shows how the hardware in the Arithmetic Section of the SPAU is used for
the recursive beamforming algorithm. The 32-bit X register (X1 contains the real 16 bits
and X2, the imaginary 16 bits) is initialized to the first piece of complex hydrophone
data, and throughout the remainder of the calculation it serves as a receptacle for the
complex feedback term that is then fed through the multipliers. The hydrophone data
are brought into the Y store where they are added to the product of the feedback term
and the steering phasor located in the Z registers. By initializing the X registers with the
first complex data point, the loop is required to be executed 33 times instead of 34.
Now it takes two cycles to calculate the feedback term; that is, the multipliers are idle
every other cycle. To use the hardware more efficiently, two beams can be formed at
the same time; while the multipliers are occupied with the first set of hydrophone data,
the adders are busy with the second set, and vice versa.

(Al BUFFER |(A3 )|BUFFER|

REAL INPUT IMAG.INPUT

Fig. 9-Use of SPAU facilities for the recursive algorithm

The source listing for SPAU recursive beamforming macro coded in ANIMIL follows.
The 16-bit W local stores and adders 5 through 7 are located in the Address Generator
section of the SPAU. In this macro, A5 and A6 are used to compute buffer addresses
and A7 is used to calculate the appropriate CFS address. BARA contains buffer A ad-
dress; BARB, buffer B address; and RAR, the CFS address. The SPAU has three coun-
ters (CTRI, CTRJ, CTRK); these counters are decremented and tested for the zero con-
dition and can thus be used to control looping. The SPAU control word also has a
literal field that can be used to initialize counters, address registers, or data registers.

CONCLUSION

After a careful investigation of time-domain and frequency-domain beamforming, it
was decided to use frequency-domain array processing for the SPE/PCPS program because
frequency-domain beamforming conforms more closely to efficient use of SPE resources.
Three frequency-domain algorithms-the dot product, the recursive algorithm, and the
FFT-were studied to determine the most efficient and accurate beamforming algorithm
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for the SPAU. After performing two quantization experiments, it was determined that
the FFT was the most accurate algorithm and that the dot product was essentially as
accurate as the recursive algorithm and vice versa. Unfortunately, the FFT does not per-
mit the flexible choice of a steering direction-only certain steering directions could be
obtained. Also, the processing time for the execution of the FFT was longer than for
either of the other algorithms because a longer FFT had to be used to obtain the needed
resolution. The dot product and the recursive algorithm used the same number of com-
plex and real operations. The dot product, however, required the generation and storage
of a large number of steering phasors-34 times as many as for the recursive algorithm
(for this array). Hence, a consideration of the tradeoffs for the three algorithms deter-
mined that the recursive Goertzel algorithm is the most promising beamforming macro
for the SPE.
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Appendix A

EXPERIMENTAL RESULTS FOR THE CASE OF A
STRONG INTERFERING SIGNAL

Experiments in which the steering direction, the interfering signal direction, and the
relative amplitude of the signal in the steering direction were varied, were performed for
all three algorithms for both rounded and truncated arithmetic. The interfering ampli-
tude remained constant at 0.5. The array was kept at a frequency of 125 Hz and was
assumed to be uniformly weighted. All responses in Tables A1-A14 are magnitudes.
Figures Al through A5 depict the discrepancies between the floating-point results and
the fixed-point simulator results.

Table Al
Theoretical Response Due to Interfering Signal Alone = 0.052195742

(Beam steered at 00; interfering signal at 50.)

"Ideal" Fixed FFTAmplitude Floating FDed Recursive (Conditional

Dot Scaling)

Truncated

0.5 0.58200610 0.58039041 0.58039041 0.58170345
0.4 0.47578730 0.47454105 0.47438025 0.47547263
0.3 0.36958643 0.36863909 0.36843207 0.36925945
0.2 0.26342519 0.26238837 0.26209744 0.26314328
0.1 0.15738379 0.15664014 0.15625000 0.15702931
0.0 0.052197763 0.051229988 0.051229988 0.051822262

Rounded

0.5 0.58200610 0.58138859 0.58133610 0.58188704
0.4 0.47578730 0.47540844 0.47540844 0.47566514
0.3 0.36958643 0.36942470 0.36942470 0.3694600
0.2 0.26342519 0.26314328 0.26314328 0.26331718
0.1 0.15738379 0.15732055 0.15732055 0.15732005
0.0 0.052197763 0.051822262 0.051822262 0.052125875
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Table A2
Theoretical Response Due to Interfering Signal Alone = 0.0014611491

(Beam steered at 00; interfering signal at 90.)

Amplitude Floatin Fixed Fixed (Condi .t
at 0° Floatig Dot Recursive (Conditional

Truncated

0.5 0.52981904 0.52822554 0.52825442 0.52949503
0.4 0.42356906 0.42248943 0.42227267 0.42328324
0.3 0.31731909 0.31643036 0.31614090 0.31700849
0.2 0.21106916 0.21014028 0.20984963 0.21079277
0.1 0.10481937 0.10423175 0.10379164 0.10452413
0.0 0.0014605774 0 0 0

Rounded

0.5 0.52981904 0.52926444 0.52926444 0.52969672
0.4 0.42356906 0.42331929 0.42331929 0.42346344
0.3 0.31731909 0.31715286 0.31715286 0.31720097
0.2 0.21106916 0.21086515 0.21086515 0.21093750
0.1 0.10481937 0.10481569 0.10481569 0.10467001
0.0 0.0014605774 0 0 0

Table A3
Theoretical Response Due to Interfering Signal Alone = 0.068542188

(Beam steered at 00; interfering signal at 110.)

Amplitude "Ideal" Fixed Fixe Fixed FFT
Amltude Floating Fixe Feurixed (Conditional

DDotDScaling)

Truncated

0.5 0.56362338 0.56212010 0.56206580 0.56350280
0.4 0.45817072 0.45701456 0.45681418 0.45784849
0.3 0.35319630 0.35234288 0.35199626 0.35290542
0.2 0.24930498 0.24840802 0.24803919 0.24908279
0.1 0.14878320 0.14833467 0.14781944 0.14854026
0.0 0.068542200 0.068331468 0.068107796 0.068331468

Rounded

0.5 0.56362338 0.56309647 0.56298807 0.56350280
0.4 0.45817072 0.45784849 0.45784849 0.45801510
0.3 0.35319630 0.35299189 0.35299189 0.35312154
0.2 0.24930498 0.24908279 0.24908279 0.24926650
0.1 0.14878320 0.14874557 0.14874557 0.14874557
0.0 0.068542200 0.068331468 0.068331468 0.068554409
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Table A4
Theoretical Response Due to Interfering Signal Alone = 0.10937610

(Beam steered at 30; interfering signal at 90.)

"Ideal" ~ ~ ~ ~ ~ ~ IFixed FFT
Amplitude "Ideal" Fixed Fixed (Conditional

at 30 Floating Dot Recursive Scaling)
D ot ____ _______ _ ______ ______j T HI- = 2.990

Truncated
0.5 0.60492088 0.60333546 0.60469961 0.60520408
0.4 0.49997977 0.49865542 0.49996948 0.50027458
0.3 0.39573778 0.39439586 0.39567054 0.39605600
0.2 0.29294221 0.29158528 0.29283851 0.29330710
0.1 0.19390723 0.19279629 0.19382244 0.19437274
0.05 0.14818653 0.14699131 0.14812879 0.14864295
0.02 0.12362913 0.12265874 0.12340288 0.12401959
0.01 0.11623552 0.11521782 0.11614116 0.11666550
0.00 0.10937556 0.10825318 0.10909563 0.10979273

Rounded
0.5 0.60492088 0.60439673 0.60437149 0.60515365
0.4 0.49997977 0.49957257 0.49966419 0.50024408
0.3 0.39573778 0.39532331 0.39547767 0.39597893
0.2 0.29294221 0.29268215 0.29263001 0.29330710
0.1 0.19390723 0.19366493 0.19374370 0.19429422
0.05 0.14818653 0.14792263 0.14802574 0.14864295
0.02 0.12362913 0.12340288 0.12352647 0.12414257
0.01 0.11623552 0.11587810 0.11614116 0.11666550
0.00 0.10937556 0.10937500 0.10923540 0.10993162

Table A5
Theoretical Response Due to Interfering Signal Alone = 0.044160619

(Beam steered at 30; interfering signal at 120.)

"Ideal" Fixed FFT
Amplitude "Ideal" Fixed Fixed (Conditional

at 30 Floating Dot Recursive Scaling)
Dot j j____________ ~THI = 2.990

Truncated
0.5 0.52695444 0.52538699 0.52680818 0.52782096
0.4 0.42070469 0.41944468 0.42093356 0.42151316
0.3 0.31445512 0.31308539 0.31444706 0.31531931
0.2 0.20820598 0.20706810 0.20824380 0.20904825
0.1 0.10195862 0.10095975 0.10216169 0.10275739
0.05 0.048839258 0.047199398 0.048789047 0.049410588
0.02 0.016984575 0.01562500 0.016572815 0.017469281
0.00 0.0044178217 0 0 0

Rounded
0.5 0.52695444 0.52643150 0.52625756 0.52776314
0.4 0.42070469 0.42046204 0.42031686 0.42151316
0.3 0.31445512 0.31430145 0.31425290 0.31527092
0.2 0.208220598 0.20817051 0.20809720 0.20904825
0.1 0.10195862 0.10186254 0.10186254 0.10275739
0.05 0.048839258 0.049100801 0.048475288 0.049708446
0.02 0.016984575 0.016572815 0.016572815 0.017469281
0.00 0.0044178217 0.0055242717 0 0
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Table A6
Theoretical Response Due to Interfering Signal Alone = 0.068170501

(Beam steered at 30; interfering signal at 140.)

1 Iea"Fixed FFT
Amplitude FIdeal" | Fixed Fixed (Conditional

at 3F Dot Dot Recursive Scaling)
t3 Dot ~~~~~~~~~~~THI =290

Truncated
0.5 0.56616246 0.56463895 0.56604245 0.56620417
0.4 0.46065728 0.45924610 0.46054008 0.46073883
0.3 0.35559592 0.35432939 0.35566186 0.35570476
0.2 0.25153510 0.25032594 0.25152125 0.25164255
0.1 0.15056389 0.14946193 0.15058074 0.15058074
0.05 0.10409644 0.10275739 0.10364452 0.10423175
0.02 0.080283220 0.079288215 0.080054303 0.080434610
0.00 0.068170269 0.067205666 0.067883387 0.068107796

Rounded
0.5 0.56616246 0.56571887 0.56561097 0.56615027
0.4 0.46065728 0.46034125 0.46014232 0.46067259
0.3 0.35559592 0.35540436 0.35336142 0.35561896
0.2 0.25153510 0.25127847 0.25133919 0.25158191
0.1 0.15056389 0.15058074 0.15037794 0.15068204
0.05 0.10409644 0.10379164 0.10379164 0.10408525
0.02 0.080283220 0.080244682 0.080244682 0.080434610
0.00 0.068170269 0.068107796 0.068107796 0.068331468

Table A7
Theoretical Response Due to Interfering Signal Alone = 0.0088881422

(Beam steered at 150; interfering signal at 60.)

"Ideal" | i Fixed FFT
Amplitude Floating Fixed I Fixed (Conditional

at 15° Dot Dot Recursive Scaling)
D ot_______ j __________ j __________ j THI = 15.1°

Truncated
0.5 0.52272415 0.52134293 0.52221172 0.52758964
0.4 0.41647567 0.41520332 0.41615773 0.42140454
0.3 0.31022824 0.30921121 0.30995054 0.31527092
0.2 0.20398347 0.20297470 0.20379996 0.20904825
0.1 0.097750098 0.096635288 0.097421593 0.10275739
0.05 0.044663078 0.043498159 0.044194174 0.049410588
0.02 0.012961134 0.011048543 0.012352647 0.017469281
0.00 0.0088899290 0.0078125000 0.0078125000 0

Rounded
0.5 0.52272415 0.52229937 0.52206560 0.52761856
0.4 0.41647567 0.41623105 0.41608439 0.42147695
0.3 0.31022824 0.30999976 0.30999976 0.31527092
0.2 0.20398347 0.20379996 0.20379996 0.20912123
0.1 0.097750098 0.097578094 0.097578094 0.10305395
0.05 0.044663078 0.044879396 0.044879396 0.050024408
0.02 0.012961134 0.013531647 0.012352647 0.018321937
0.00 0.0088899290 0.0078125000 0.0095683193 0
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Table A8
Theoretical Response Due to Interfering Signal Alone = 0.030320258

(Beam steered at 150; interfering signal at 200.)

"Ideal" ~ ~ TFixed FFT
Amplitude "Ideal" Fixed Fixed (Conditional

at 150 Floating Dot Recursive Scaling)
Dot ~~~~~~~~~THI = 15.1°

Truncated
0.5 0.56144454 0.56013500 0.56103324 0.55134889
0.4 0.45519619 0.45399969 0.45470485 0.44517542
0.3 0.34894885 0.34780983 0.34859862 0.33905710
0.2 0.24270382 0.24168294 0.24250232 0.23287279
0.1 0.13646655 0.13554181 0.13621559 0.12657697
0.05 0.083360074 0.082494969 0.083231546 0.073495655
0.02 0.051514532 0.050630787 0.051229988 0.041707337
0.00 0.030318587 0.029231698 0.030257682 0.019918045

Rounded
0.5 0.56144454 0.56108764 0.56089724 0.55134889
0.4 0.45519619 0.45483916 0.45473851 0.44520969
0.3 0.34894885 0.34864239 0.34851106 0.33905710
0.2 0.24270382 0.24250232 0.24237644 0.23287279
0.1 0.13646655 0.13643945 0.13655124 0.12669746
0.05 0.083360074 0.083414674 0.083414674 0.073702978
0.02 0.051514532 0.051229988 0.051526976 0.041707337
0.00 0.030318587 0.030257682 0.030257682 0.020669932

Table A9
Theoretical Response Due to Interfering Signal Alone = 0.11458246

(Beam steered at 150; interfering signal at 220.)

"Ideal" IFixed FFT
Amplitude Floating Fixed Fixed (Conditional

at 15° Dot Dot Recursive Scaling)
D ot__________ ______ _____ _ ___j__ _____ _____ TH I = 15.10

Truncated
0.5 0.56642840 0.56504416 0.56598853 0.56633890
0.4 0.46275533 0.46136765 0.46225976 0.46278760
0.3 0.36058561 0.35933254 0.36022318 0.36077343
0.2 0.26168606 0.26046224 0.26122271 0.26198098
0.1 0.17180028 0.17035908 0.17134150 0.17231832
0.05 0.13601471 0.13486466 0.13576677 0.13666294
0.02 0.12083119 0.11976336 0.12065192 0.12153398
0.00 0.11458272 0.11334858 0.11415343 0.11535018

Rounded
0.5 0.56642840 0.56606940 0.56588068 0.56633890
0.4 0.46275533 0.46229276 0.46212770 0.46282057
0.3 0.36058561 0.36026554 0.36018082 0.36077343
0.2 0.26168606 0.26139789 0.26133951 0.26203922
0.1 0.17180028 0.17160846 0.17151952 0.17240685
0.05 0.13601471 0.13587912 0.13576677 0.13677454
0.02 0.12083119 0.12065192 0.12077832 0.12153398
0.00 0.11458272 0.11455374 0.11442146 0.11548239
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Table A10
Theoretical Response Due to Interfering Signal Alone = 0.031601997

(Beam steered at 150; interfering signal at 240.)

"Ideal" Fixed FFTAmplitude ea. Fixed Fixed (Conditional
at 150 DFoat Dot Recursive Scaling)

Dot j ~~~~~~~~THI = 15.10

Truncated
0.5 0.50427847 0.50304250 0.50373968 0.49902248
0.4 0.39809663 0.39709486 0.39774756 0.39284525
0.3 0.29196440 0.29116633 0.29168992 0.28694324
0.2 0.18596670 0.18487749 0.18578316 0.18112536
0.1 0.080635882 0.079480429 0.080244682 0.076146831
0.05 0.030466500 0.029231698 0.029749114 0.027621359
0.02 0.017123668 0.015625000 0.016572815 0.021395412
0.00 0.031603815 0.031734525 0.031250000 0.037057941

Rounded
0.5 0.50427847 0.50386083 0.50389111 0.49905306
0.4 0.39809663 0.39790099 0.39782428 0.39300059
0.3 0.29196440 0.29179452 0.29163760 0.28699642
0.2 0.18596670 0.18586527 0.18594735 0.18120959
0.1 0.080635882 0.080624092 0.080434610 0.076546554
0.05 0.030466500 0.030257682 0.030257682 0.028168369
0.02 0.017123668 0.017469281 0.017469281 0.022097087
0.00 0.031603815 0.031734525 0.031734525 0.037057941

Table All
Theoretical Response Due to Interfering Signal Alone = 0.0044093214

(Beam steered at 450; interfering signal at 390.)

Fixed FFT
Amplitude "Ideal" Fixed Fixed (Conditional

at 450 Dot Dot Recursive Scaling)
Dot ~~~~~~~~~THI = 45.1

Truncated
0.5 0.52686931 0.52628656 0.52611257 0.53482825
0.4 0.42061937 0.42067973 0.42035316 0.42865643
0.3 0.31436948 0.31430145 0.31415577 0.32240172
0.2 0.20811970 0.20802386 0.20780369 0.21622426
0.1 0.10187037 0.10171263 0.10171263 0.10993162
0.05 0.048746795 0.048789047 0.048475288 0.056875859
0.02 0.016876975 0.016572815 0.016572815 0.024705294
0.00 0.0044113533 0 0 0

Rounded
0.5 0.52686931 0.52637353 0.52611257 0.53491364
0.4 0.42061937 0.42064346 0.42049833 0.42869203
0.3 0.31436948 0.31425290 0.31415577 0.32249637
0.2 0.20811970 0.20802386 0.20795049 0.21622426
0.1 0.10187037 0.00186254 0.10171263 0.11007033
0.05 0.048746795 0.048789047 0.048789047 0.056875859
0.02 0.016876975 0.016572815 0.017469281 0.025315393
0.00 0.0044113533 0.0055242717 0.0055242717 0.0055242717
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Table A12
Theoretical Response Due to Interfering Signal Alone = 0.016235393

(Beam steered at 450; interfering signal at 520.)

"Ideal" Fixed FFTAmplitude Floal" Fixed Fixed (Conditional
at 450 Floating Dot Recursive Scaling)

Dot _____________ITHI = 45.1°

Truncated
0.5 0.54748326 0.54698660 0.54698660 0.53928890
0.4 0.44123326 0.44090472 0.44073165 0.43301270
0.3 0.33498326 0.33484561 0.33484561 0.32682032
0.2 0.22873326 0.22850728 0.22857404 0.22062533
0.1 0.12248327 0.12253427 0.12240968 0.11428702
0.05 0.069358283 0.069218926 0.068998132 0.061267137
0.02 0.037483305 0.037057941 0.037467434 0.029231698
0.00 0.016233369 0.015625000 0.015625000 0.0078125000

Rounded
0.5 0.54748326 0.54698660 0.54698660 0.53931720
0.4 0.44123326 0.44090472 0.44083550 0.43315363
0.3 0.33498326 0.33480004 0.33480004 0.32691369
0.2 0.22873326 0.22864079 0.22857404 0.22076361
0.1 0.12248327 0.12240968 0.12253427 0.11455374
0.05 0.069358283 0.068998132 0.069439019 0.061267137
0.02 0.037483305 0.037467434 0.037467434 0.029749114
0.00 0.016233369 0.015625000 0.016572815 0.0078125000

Table A13
Theoretical Response Due to Interfering Signal Alone = 0.11573950

(Beam steered at 450; interfering signal at 550.)

"Ideal" ~~~~~~~Fixed FFT
Amplitude "Ideal" Fixed Fixed (Conditional

at 450 Floating Dot Recursive Scaling)
Dot _____________j ~THI = 45.10

Truncated
0.5 0.58183041 0.58125735 0.58123110 0.58141484
0.4 0.47785372 0.47717046 0.47710650 0.47745817
0.3 0.37515310 0.37467434 0.37471506 0.37479649
0.2 0.27516114 0.27460687 0.27471798 0.27488456
0.1 0.18238854 0.18163012 0.18204969 0.18213349
0.05 0.14320733 0.14213598 0.14288548 0.14288548
0.02 0.12475323 0.12364994 0.12426542 0.12451076
0.00 0.11573949 0.11442046 0.11535018 0.11548239

Rounded
0.5 0.58183041 0.58120485 0.58117859 0.58149356
0.4 0.47785372 0.47736229 0.47745817 0.47755404
0.3 0.37515310 0.37500000 0.37491861 0.37487791
0.2 0.27516114 0.27494007 0.27494007 0.27494007
0.1 0.18238854 0.18213349 0.18221725 0.18221725
0.05 0.14320733 0.14299223 0.14288548 0.14309890
0.02 0.12475323 0.12463325 0.12451076 0.12463325
0.00 0.11573949 0.11548239 0.11561444 0.11561444
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Table A14
Theoretical Response Due to Interfering Signal Alone = 0.0069062934

(Beam steered at 450; interfering signal at 600.)

"Ideal" ~~~~~~~Fixed FFT
Amplitude "Ideal" | Fixed Fixed (Conditional

at 450 Flatng | Dot Recursive Scaling)
Dot ~~~~~~~~~THI = 45.10

Truncated
0.5 0.53811670 0.53775884 0.53747502 0.53368582
0.4 0.43186682 0.43156550 0.43142405 0.42755151
0.3 0.32561702 0.32555729 0.32546354 0.32131132
0.2 0.21936741 0.21930733 0.21902884 0.21509219
0.1 0.11311853 0.11294400 0.11294400 0.10881553
0.05 0.059995573 0.059754135 0.059754135 0.055518244
0.02 0.028125508 0.027621359 0.027621359 0.023437500
0.00 0.0069041587 0.0055242717 0.0055242717 0

Rounded
0.5 0.5311670 0.53753179 0.53761695 0.53380018
0.4 0.43186682 0.43153014 0.43149478 0.42762288
0.3 0.32561702 0.32541665 0.32546354 0.32145376
0.2 0.21936741 0.21916813 0.21923774 0.21516311
0.1 0.11311853 0.11307902 0.11307902 0.10895567
0.05 0.059995573 0.060008951 0.060008951 0.055792410
0.02 0.028125508 0.027621359 0.028168369 0.024079742
0.00 0.0069041587 0.0078125000 0.0078125000 0
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Fig. Al- Signal strength at 00, the steering direction, vs magnitude of response
with the interfering signal at 50.
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AMPLITUDE OF SIGNAL AT O°

Fig. A2-Signal strength at 0°, the steering direction, vs magnitude of response
with the interfering signal at 50 (magnified)
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0.2 0.3
AMPLITUDE AT 3°

Fig. A3-Signal strength at 30, the steering direction, vs magnitude of response
with the interfering signal at 9
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Fig. A4-Signal strength at 450, the steering direction. vs magnitude of response
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Fig. A5-Signal strength at 450, the steering direction, vs magnitude of response
with the interfering signal at 550 (magnified)
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Appendix B

EXPERIMENTAL MEAN AND VARIANCE FOR A WEAK SIGNAL PLUS NOISE

The experimental mean and variance were calculated after 5000 trials for magnitudes
varying from 0.0 to 0.1. Rounded arithmetic and automatic scaling were used for the
recursive algorithm and the dot product, which were the only algorithms simulated.
Tables B1-B4 give the results. Figures B1 through B8 depict the discrepancies between
floating-point results and fixed-point simulator results.
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Table B1

Amp. Floating Recursive | Dot Product

00 Mean Variance Mean T Variance Mean Variance

0.1 0.044373229 0.35699172E-06 0.044325061 0.35620483E-06 0.044325122 0.35621106E-06
(0.11289062E-01)* (0.11199951E-06) (0.11199951E-01)

0.03 0.034346217 0.22412060E-06 0.034304321 0.22358943E-06 0.034304332 0.22359038E-06
(0.10160156E-02) (0.97656250E-03) (0.97656250E-05

0.01 0.033513388 0.21300947E-06 0.033471893 0.21249185E-06 0.033471893 0.21249185E-06
(0.11289062E-03) (0.12207031E-03) (0.12207031E-03)

0.003 0.033435261 0.21194003E-06 0.033393378 0.21142062E-06 0.033393378 0.21142062E-06
(0.10160156E-04) (0) (0)

0.001 0.033433259 0.21190300E-06 0.033391370 0.21138431E-06 0.0033391370 0.21138431E-06
(0.11289062E-05) (0) (0)

0.0003 0.033434692 0.21191824E-06 0.033392950 0.21139953E-06 0.033392950 0.21139953E-06
(0.10160156E-06) (0) (0)

0.0001 0.033435305 0.21192527E-06 0.033393378 0.21140525E-06 0.033393378 0.21140525E-06
(0.11289062E-07) (0) (0)

0 0.033435645 0.21192924E-06 0.033393555 0.21141028E-06 0.033393555 0.21141028E-06
(0) (0) (0)

*Response without noise is given in parentheses.

CA3 10
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Table B2

Amp. Floating Recursive Dot Product
at
30 Mean J Variance Mean Variance Mean Variance

0.1 0.044421970 0.36386636E-06 0.044363605 0.36290567E-06 0.044372168 0.36302644E-06
(0.011289062)* (0.11169434E-01) (0.11169434E-01)

0.03 0.054018257 0.23169706E-06 0.033968890 0.23101597E-06 0.033975104 0.23111941E-06
(0.10160156E-02) (0.97656250E-03) (0.10070801E-02)

0.01 0.033077799 0.22037314E-06 0.0333028516 0.21970719E-06 0.033035657 0.21980774E-06
(0.11289062E-03) (0.91552734E-04) (0.91552734E-04

0.003 0.032962001 0.21918584E-06 0.032913635 0.21855469E-06 0.032920020 0.21862838E-06
(0.10160156E-04) (0) (0)

0.001 0.032949237 0.21911099E-06 0.032900769 0.21845687E-06 0.032906854 0.21853893E-06
(0.11289062E-05) (0) (0)

0.0003 0.032946903 0.21911256E-06 0.032898151 0.21848176E-06 0.032904663 0.21856441E-06
(0.10160156E-06) (0) (0)

0.0001 0.032946439 0.21911565E-06 0.032896600
0.21846975E-06 0.032903680 0.21856693E-06

(0.11289062E-07) (0) (0)

0 0.032946241 0.21911764E-06 0.032896527 0.21846577E-06 0.032903131 0.21855820E-06
(0) (0) (0)

*Response without noise is given in parentheses.
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Table B3

Amp. Floating Recursive 1 Dot Product
at-fjMa
150 Mean Variance | Mean j Variance Mean Variance

0.1 0.044081811 0.35856037E-06 0.044016095 0.35746658E-06 0.044031842 0.35772813E-06
(0.11289062E-01)* (0.11169434E-01) (0.11169434E-06)

0.03 0.033611957 0.21880179E-06 0.033558026 0.21810768E-06 0.033571442 0.21828128E-06
(0.10160156E-02) (0.97656250E-03) (0.97656250E-03)

0.01 0.032652602 0.20533061E-06 0.032598730 0.20465385E-06 0.032611658 0.20481564E-06
(0.11289062E-03) (0.91552734E-04) (0.91552734E-04)

0.003 0.032530190 0.20339398E-06 0.032475824 0.20269992E-06 0.032489081 0.20296734E-06
(0.10160156E-04) (0) (0)

0.001 0.032515536 0.20310526E-06 0.032461987 0.20242293E-06 0.032474451 0.20258414E-06
(0.11289062E-05) (0) (0)

0.0003 0.032512541 0.20303199E-06 0.032457568 0.20234545E-06 0.032472015 0.20251779E-06
(0.10160156E-06) (0) (0)

0.0001 0.032511888 0.20301370E-06 0.032457623 0.20232190E-06 0.032470575 0.20249740E-06
(0.11289062E-07) (0) (0)

0 0.032511596 0.20300499E-06 0.032455701 0.20230259E-06 0.032469348 0.20248317E-06
(0) (0) (0)

*Response without noise is given in parentheses.
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Table B4

Amp. Floating Recursive Dot Product
at
450 Mean Variance Mean Variance Mean Variance

0.1 0.044266939 0.35720378E-06 0.044199896 0.35611279E-06 0.044218701 0.35638782E-06
(0.11289062E-01)* (0.11169434E-01) (0.11169434E-01)

0.03 0.034233958 0.22546720E-06 0.034177771 0.22473487E-06 0.034191229 0.22490962E-06
(0.10160156E-02) (0.97656250E-03) (0.97656250E-03)

0.01 0.033399423 0.21425207E-06 0.033343774 0.21354277E-06 0.033356311 0.21370934E-06 v
(0.11289062E-03) (0.91552734E-04) (0.91552734E-04)

0.003 0.033320699 0.21310129E-06 0.033264722 0.21240511E-06 0.033278308 0.21255863E-06 W
(0.10160156E-04) (0) (0) )

0.001 0.033318527 0.21303673E-06 0.033262708 0.21234886E-06 0.033275873 0.21249828E-06
(0.11289062E-05) (0) (0)

0.0003 0.033319900 0.21304188E-06 0.033264862 0.21234927E-06 0.033278003 0.21251219E-06
(0.10160156E-06) (0) (0)

0.0001 0.033320495 0.21304599E-06 0.033264868 0.21233795E-06 0.033277380 0.21250822E-06
(0.11289062E-07) (0) (0)

0.0 0.033320827 0.21304849E-06 0.033264893 0.21233933E-06 0.033277698 0.21250711E-06
(0) (0) (0)

*Response without noise is given in parentheses.
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Fig. B1 Signal strength at 00, the steering direction,
vs mean power.
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SIGNAL STRENGTH AT 0°

Fig. B2-Signal strength at 00, the steering direction, vs mean power (magnified)
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SIGNAL STRENGTH AT 30

Fig. B3 - Signal strength at 30, the steering direction, vs mean power.
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Fig. B4-Signal strength at 30, the steering direction,
vs mean power (magnified)
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